Модель прогнозування витрат на інноваційну діяльність у промисловому секторі України

Вантажиться...
Ескіз

Дата

2023-05

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

У статті розглянуто проблему підвищення достовірності оцінки величини витрат на інноваційну діяльність у промисловому секторі України. Використовуючи як первинні дані інформацію попереднього дослідження, проаналізовано залежність витрат інноваційної діяльності від групи факторів, внаслідок чого було вирішено побудувати багатофакторні регресійні моделі. Для побудови даної групи моделей було використано метод найменших квадратів. У процесі перевірки отриманих багатофакторних моделей виявилося, що кожна модель має внутрішні параметри, в яких величина p-значень перевищує граничне значення, а значить, отримані величини внутрішніх параметрів моделі ні є суттєвими. Тому всі багатофакторні моделі, побудовані за допомогою методу найменших квадратів, були усунені від подальшого дослідження. На наступному етапі дослідження побудовано однофакторні регресійні моделі за допомогою методу найменших квадратів, де як фактор було використано кількість освоєного виробництва нових видів продукції (технологічних процесів). Після відсіювання несуттєвих моделей ті, що залишилися, були порівняні стосовно їх якісних характеристик. Проте в усіх однофакторних моделях виявилося, що розраховані величини середньої помилки апроксимації перевищили 10 %. Тому, знову ж таки, всі моделі були усунені від подальшого дослідження. У зв’язку з неможливістю отримання моделі за допомогою методу найменших квадратів в процесі моделювання було вирішено використати методи машинного навчання з учителем. Серед методів машинного навчання вирішено звернути увагу на методи: k-ближніх сусідів, дерева регресії, нейронної мережі. Беручи до уваги те, що на ці моделі мультиколінеарність між факторами не впливає негативно, як дані для моделей були використані початкові дані без додаткових перетворень. За результатами дослідження виявилася, що серед моделей за методами машинного навчання найліпшими виявилися модель бінарного регресійного дерева рішень (при величині гіперпараметра max_depth = 3) та нейронної мережі. При порівнянні вказаних моделей виявилося, що модель на основі дерева рішень має меншу величину середньої помилки апроксимації, а значить, дану модель можна рекомендувати до використання при прийнятті управлінських рішень щодо прогнозування витрат на інноваційну діяльність підприємств промисловості в майбутньому.

Опис

Волосюк, М. В. Модель прогнозування витрат на інноваційну діяльність у промисловому секторі України = Cost Forecasting Model for Innovation Activities in the Industrial Sector of Ukraine / М. В. Волосюк, Л. Б. Прокопович // Бізнес Інформ. – 2023. – № 5. – С. 73–79.

Ключові слова

інноваційно-технологічний розвиток, інноваційна діяльність, промисловий сектор, витрати, регресійні моделі, k-ближніх сусідів, дерево рішень, нейронна мережа, innovation and technological development, innovation activity, industrial sector, costs, regression models, k-near neighbors, decision tree, neural Network

Бібліографічний опис