Дисертації на здобуття наукових ступенів
Постійне посилання на фонд
Переглянути
Перегляд Дисертації на здобуття наукових ступенів за Ключові слова "05.08.03 «Конструювання та будування суден»"
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Удосконалення конструкції підводних населених апаратів теплоізолюючими блоками плавучості(2017) Юреско, Т. А.; Yuresko, T. A.; Бурдун Є. Т.Юреско Т. А. Удосконалення конструкції підводних населених апаратів теплоізолюючими блоками плавучості. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.08.03 «Конструювання та будування суден». – Національний університет кораблебудування імені адмірала Макарова, МОН України, Миколаїв, 2017. В дисертаційній роботі розв’язано актуальну науково-прикладну задачу удосконалення конструкції підводного населеного апарату (ПНА) за рахунок надання додаткової функції теплоізоляції окремим елементам плавучості зі сферопластика з додатковою поруватістю (СДП) у вигляді зовнішнього суцільного облицювання міцного корпусу з призначенням ресурсу роботи блоків в умовах експлуатації: тривалих глибоководних занурень, циклічних глибоководних занурення-спливань на поверхню в районах з температурою повітря нижче 0 ºС. Аналіз елементів плавучості в конструкціях ПНА, що працюють в умовах тривалих і циклічних занурень на глибинах 1500...2000 м та підіймаються на поверхню в районах з низькою температурою повітря, а також розгляд проблем, пов’язаних з підтриманням температурного режиму всередині апарату, особливо, в аварійних ситуаціях, показав, що заміна частини закладних елементів плавучості на блоки зі СДП густиною 450...500 кг/м3 у вигляді суцільного облицювання міцного корпусу зовні, окрім основного призначення – збільшення сили підтримання, перспективна з позиції надання теплоізоляції міцному корпусу. В конструкції ПНА запропонована форма блоків плавучості зі СДП використана вперше. Основне робоче навантаження на блоки зі СДП це – гідростатичний тиск, дія якого супроводжується накопиченням пошкоджень – поступовим руйнуванням повітряних комірок і проникненням води всередину блоку. Це призводить до зменшення сили плавучості блоків, що впливає на баластування всього ПНА та знижує теплоізоляційні властивості СДП, погіршуючи тепловий захист міцного корпусу. Отже, основна увага в дисертаційній роботі приділяється експериментальному дослідженню процесу накопичення пошкоджень в СДП та його впливу на зміну плавучих і теплоізоляційних властивостей блоків в конструкції апарату в умовах експлуатації. Експлуатаційні навантаження, що розглядаються – довготривалі занурення, характерні для стаціонарного режиму роботи ПНА, і кліматичний вплив, який притаманний для циклічного занурення апарату та спливання на поверхню в умовах температур повітря нижче за 0 ºС. Експериментально досліджено механізм накопичення пошкоджень в блоках плавучості зі СДП при тривалих гідростатичних навантаженнях, який полягає у послідовному руйнуванні повітряних комірок і проникненні води з поверхні всередину блоку. Це дозволило побудувати математичну модель накопичення пошкоджень в блоках зі СДП на основі синтезу моделей лінійної в’язко-пружності та механіки руйнування у вигляді логістичного розподілу відносно рівня гідростатичного тиску (глибини) і часу занурення. Обґрунтовано фізичну модель за аналогією з явищем дифузії, яка дозволяє прогнозувати ресурс роботи блоків будь-якої форми та розміру в конструкції апарату при експлуатаційних навантаженнях. Розроблені моделі отримали подальший розвиток для прогнозування ресурсу роботи блоків в конструкції ПНА. Розроблено математичну модель зміни теплоізоляційних властивостей блоків зі СДП з урахуванням накопичених пошкоджень при тривалому зануренні апарату. Експериментально досліджено механізм накопичення пошкоджень в блоках плавучості зі СДП при циклічному зануренні-підйомі апарату на поверхню в умовах від’ємних температур. Встановлено, що такі умови роботи апарату збільшують обсяг пошкоджень в блоках зі СДП вдвічі, в порівнянні з експлуатацією при відсутності кліматичних факторів. Розроблено математичну модель накопичення пошкоджень в блоках зі СДП при циклічному впливі гідростатичного тиску та кліматичного фактору, яка, за аналогією з моделлю тривалого навантаження, побудована на основі логістичного розподілу в залежності від рівня гідростатичного тиску (глибини) та кількості циклів кліматичного впливу. Модель уточнено додатковим параметром для врахування впливу фазового переходу води, що накопичена в блоках при зануренні. Розроблено математичну модель зміни теплоізоляційних властивостей блоків зі СДП при цикло-гідростатичних навантаженнях апарату. Експериментально встановлено зв’язок між обсягом накопичених пошкоджень і зміною теплоізоляційних властивостей блоків плавучості зі СДП, який показав, що теплопровідність залежить, в основному, від рівня накопиченої пошкоджуваності, а механізм руйнування блоків зумовлений глибиною, тривалістю занурення, циклами занурення-підйому апарату на зміну теплопровідності істотно не впливає, а визначає тільки різну інтенсивність процесу пошкодження. Вперше, базуючись на аналізі результатів експериментальних і теоретичних досліджень, встановлено, що ПНА зі сферичним міцним корпусом з робочою глибиною 1500...2000 м втрачає силу плавучості за рахунок накопичення пошкоджень в блоках зі СДП від 5 до 13 % при тривалості занурень до 1000 годин, від 8 до 26 % при 1000 циклах занурень-спливань при температурі повітря нижче за 0 ºС, теплопровідність при цих пошкодженнях збільшується від 0,085 до 0,15 Вт/(м∙ºК). Удосконалено методику проектування ПНА з глибиною занурення 1500...2000 м шляхом урахуванням втрати сили плавучості і теплоізолюючих властивостей блоків зі СДП при накопичених пошкодженнях, що дає змогу визначити втрату сили плавучості всього апарату і спрогнозувати зміну температурного режиму всередині житлового відсіку. Модифікація схеми розташування блоків плавучості в ПНА удосконалила його конструкцію шляхом облицювання міцного корпусу теплоізолюючими блоками плавучості зі СДП, що підвищило автономність роботи ПНА у 3 рази. Одними із можливих напрямків подальшого дослідження за тематикою роботи є розробка теоретичних основ створення елементів плавучості з теплоізолюючими властивостями (з композиційних матеріалів) для конструкції ПНА, що експлуатуються на глибинах 2000...5000 м: в районах Північного Льодовитого океану; в Атлантичному океані в зонах гідротермальних джерел. Практичне значення одержаних результатів: удосконалення конструкції блоків плавучості ПНА дозволило отримати додаткову функцію теплоізоляції з метою зменшення теплових витрат на 75 % і забезпечення нормальних умов населеності всередині житлового відсіку; додаткова теплова ізоляція міцного корпусу ПНА дозволила збільшити його живучість до 10...15 годин під час аварійних ситуацій; запропонована нова конструкція блоків плавучості у вигляді суцільного облицювання міцного корпусу апарата блоками зі СДП густиною 450...500 кг/м3 і коефіцієнтом теплопровідності 0,085 Вт/(м∙ºК) забезпечила подвійну експлуатаційну функцію – плавучості та теплоізоляції, що підвищило конкурентоздатність вітчизняного оснащення підводних технічних засобів для глибин експлуатації до 2000 м; доведено можливість використання теплоізолюючих блоків плавучості зі СДП в конструкціях апаратів, які працюють в «жорстких» кліматичних умовах при зануреннях на глибини континентального шельфу з врахуванням впливу від’ємних температур повітря на зміну ресурсу роботи блоків плавучості; запропонований алгоритм прогнозування ресурсу роботи блоків зі СДП дозволяє оцінити втрату плавучості і зміну температури всередині міцного корпусу апарату за вихідними даними: глибина, тривалість занурення, кількість циклів кліматичних навантажень, допустимий рівень пошкоджуваності або скорегувати залишковий ресурс роботи блоків в складі апарату за вказаною у судновому журналі передісторією навантажень. Практичне застосування результатів роботи відображено в розроблених програмах-методиках експериментального дослідження характеристик блоків плавучості зі СДП, методиці проектування ПНА, стандарті підприємства на блоки плавучості підводних технічних засобів. Результати досліджень було використано при виконанні робіт з Державної цільової оборонної програми будівництва кораблів класу «корвет» в ПАТ «ЧСЗ»; при підготовці фахівців Національного університету кораблебудування ім. адм. Макарова.